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It is shown that the Zawadzki — Bretsznajder rule, compensation effect, and iso-
kinetic temperature are simple consequences of interpretation of the Arrhenius equation
as a projection correlation. It is established that such an interpretation of the Arrhenius
equation allows the discrimination of the deviation factors which impart a definite
(although not always simple and recognized) physical sense, to the known empirical
correlation. A possibility of deriving new correlation relationships by this method of
reasoning is presented.

Thermal dissociation of solids, crystalline starting materials or mineral raw
materials is usually carried out to obtain solid products of required chemical and
phase compositions, appropriate activity and utilizability for further technological
applications, or to obtain desired gaseous products. Typical, trivial examples
of such processes are: the thermal decomposition of limestones in the sugar
industry and in the production of building materials; the decompositions of chro-
mium(IIT), magnesium (II), strontium(II), manganese(Il) and other carbonates
in the production of oxide catalysts; the dissociation of carbonyls and iodides
in the preparation of metals of very high purity; the dehydration of crystalline
hydrates in the production of surface-active agents; and many others.

The practical utilization of thermal decomposition reactions is responsible for
the fact that the knowledge of the mechanisms and the rates of these reactions is
one of the most important problems of contemporary chemical investigations.
The solution of these problems is a very difficult and time-consuming task, but
it allows the intensification of very important technological processes.

The very complex nature of topochemical processes of the type

—_
Asolid ~ Bsoli;l -+ Cgas

led to the fact that, since the first Lewis work on this subject (published in 1905),
no attempt to give a general theory of such processes has been made until today.
However, some regularities concerning the courses of these processes have been
known for many years, and more and more attempts towards their theoretical
elucidation have been observed recently.
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The aim of the present work was to find a relationship between one of these
regularities, usually referred to as the Zawadzki— Bretsznajder rule, and the com-
pensation effect, which is recognized as one of the fundamental laws of chemical
kinetics. We also aimed to prove that a direct consequence of this rule is the
existence of the isokinetic temperature, a knowledge of which allows calculation
of the constant term in the compensation equation.

Compensation effect and isokinetic
temperature in a thermal dissociation reaction of the type
Agotia = Boolia + Caas

During studies on the thermal dissociation of calcium carbonate under different
pressures of the gaseous reaction product, Zawadzki and Bretsznajder [1] were
first to observe that the activation energy of the process was a function of the
pressure of the gaseous reaction product

E = f(Pcog) 1

and it increased (in the decomposition of CaCO, from E = 40 kcal/mole for p =
= 10~* mm Hg to E = 376 kcal/mole for p = 45 mm Hg) with increasing COq
pressure. Similar relationships were later observed for carbonates, hydroxides,
oxides and peroxides, sulfates and basic sulfates, oxalates, ammonium complexes,
and crystalline hydrates.

The Zawadzki— Bretsznajder rule was theoretically confirmed by Pavluchenko
and Prodan [2] in 1961 after a thorough analysis of a reversible reaction of the
type Ao = Bsotia = Cgase These workers derived the following expression for
the activation energy of thermal dissociation at constant temperature:

E=E,+ 1 +mQ -2 @
by —P

where E, = activation energy of the association process (e.g. synthesis of CaCO;
from CaO and CO,);

A = adsorption (or desorption) heat of the gaseous reaction product;

Q = heat of dissociation;

p, = decomposition pressure (equilibrium pressure of the gaseous prod-
uct at the temperature of the reaction);

p = pressure of the gaseous product in the reaction system;

m = constant; 0< m < 1.

For p™ — 0 (i.e. for high vacuum)

. 23
lim =1
ry —p*
and:
E=E,+ .+ mQ (3)
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whereas for p™ — pg*

m
fim—0 = o
Po— P
and:
E=w. cy
Hence for 0 < p < p, we have
E,+1+mQ <E< w %)

and Eq. (5) becomes equivalent to the Zawadzki— Bretsznajder rule (1).
. . ) 1
Relationships (1) and (5) may be represented in the coordinate system In k, 7

i.e. in the Arrhenius diagram, and they can be described by the Arrhenius equation

E
ll'lk =4 — 'R—T'- (521)
E
or: k=A4 eXp '—ﬁ) (Sb)

where: k& = dissociation rate constant;
A = pre-exponential coefficient;
R = gas constant;
T = absolute temperature.

If, according to Eqs (1) and (5), the value of E increases considerably due to an
increase in p, then the increase of E can not be compensated by the increase of
T alone, but the value of 4 in Eq. (5b) must also be changed. The relation between
A and E is represented by an empirical equation, usually referred to as the com-
pensation equation [3]:

Ind=a+b+FE ©)
where ¢ and b are constants.

The compensation equation represents a kind of general relationship, since
a compensation effect has been observed in many catalytic reactions, during

‘ < ‘ /
L8 c
£ P1<Py<P3<
p; =const. | ,,/// -
py=const I:;////
py=const o] -
Ll E
Fig. 1 Fig. 2
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290 PYSIAK, SABALSKI: COMPENSATION EFFECT

measurements of viscosity and diffusion, in studies on electric conductance and
electron emission, in biological processes and in the thermal dissociations of many
solids (see 3 and literature included there). Relation (6) can be represented graphi-
cally in the coordinate system In 4, E (Fig. 2).

For reactions of the type discussed here the value of A is usually equal to 0,
and the values of b can be found from the slopes of the lines.

[

Pr=Pz<P3<Ps<

"k
T
!
-
~Z
s
7

-
”

p, =const
p,=const
py =const
p, =const.

1

L R it e e

Fig. 3

During studies on the decomposition of carbonates and the dehydration of
crystalline hydrates we have observed [4] that for a process carried out at different
pressures of the gaseous reaction products it is possible to find a temperature
referred to as the isokinetic temperature, at which the reaction proceeds with a
fixed value of the rate constant (Fig. 3).

A knowledge of the isokinetic temperature f allows determination of the coeffi-
cient b in compensation equation (6).

At certain temperatures 7, and T, under pressures p; and p,, let In k; = In k.
Hence:

7 "
Ind"—InAd" = £ _E

. 7
RT, RT, M

In order to obtain Eq. (6) it is necessary to assume 7, = T, = ffin Eq. (7). Then:
AE

Aln 4 = ——— 8
nd =g ®
and from Eqs (6) and (8) one obtains
1
== 9
b=s g ©)

In subsequent parts of the present paper it will be shown that the empirical
relations (6) and (9) and their correlation can be theoretically justified if the given
process of thermal dissociation can be described by the Arrhenius equation.
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Therefore we shall prove that:

(1) the existence of the isokinetic temperature f§ is a necessary condition for
the appearance of the compensation effect;

(2) the appearance of the compensation effect is evidence of the existence of
the isokinetic temperature §; which is equivalent to the statement about the exist-
ence of a line- pencil relationship between k, E, T and A, provided that these
quantities are interrelated by the Arrhenius equation.

Mathematical justification of the existence of the isokinetic temperature
and compensation effect

The basis for further considerations will be the Arrhenius equation (5a) rear-
ranged to the following form:

1
Ink+FE—— — = 0. 10
nk + RT In 4 (10)

1
If we put T =X and In k = y in Eq. (10), then for given values of 4 and E (R =

= const) we obtain a linear equation:

y+£'x—lnA=O. (11)
R
It frequently occurs in practice that, under certain assumptions, the lines (11)
have a common point (x,, ,) for different values of 4 and E, i.e. they form a
pencil.
In such cases it appears that:

Theorem 1. If the lines represented by Eq. (11) form a pencil, a linear relationship
exists between In 4 and E (the compensation equation is valid).

Proof:: Let Eq. (11) be fulfilled for certain (y,, x,) and E,, E,, E3, A;, Ay, A3, i.€. let:

E

yO+T1xO-InA1=0 (12)
E

Yo+ —x,—Indy =0 (13)
R
E

Yo + %xo —Ind;=0. (14)

By subtracting Eq. (13) from (12) and Eq. (14) from (13), we obtain, after re-
arrangement:

Indy — Ind, = % (E, — E,) (15)
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X0
If it is assumed that E; # E, and E; # E,, we can divide Eq. (15) by (£, — E),),
and Eq. (16) by (E; — E,) to obtain the following relation:

X ImAdy—Ind, InAd;—Ind, a7
R~ E,—E E —E

. . . Aln A
which means that the quotient of differences is constant, as the selec-

tion of E,, E,, E; was completely arbitrary.

If the quotient of differences is constant (see Lemma 1 below), the derivative
with regard to the variable is also constant, which means (compare Lemma 2
below) that the relationship between the value of the function and the variable
is linear.

0InA

Hence if = const., then = const. too, and for certain

constants @ and b we have In A = a + bE, which was to be proved.

4
Lemma 1. If a quotient of differences %’f@ = const. for all x,, then the de-
X

.. of
rivative —— = const.
Ox

Proof: From the definition of the derivative it is known that:

oeflx) i Slxg + 1) — f(xp)
0x  h-o h :

Let us assume a sequence h, — 0, such that 4, # O for all #; from Heine’s defi-
nition of convergence of a function we have:

i G0 1) = s _ o S ) = )
h-0 h hy

besides: Sl + hy) — flxg)  Af(xp)
h, T 4x

. A4
From the assumption above, /xo)

_ SO+ ) — fx) Ax

a, A is constant for all x,, and the limit of the sequence
n

is a, for all x, Hence, o is always constant, which was to be proved.
X

, where Ax = h,.

= const., which means that the sequence
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L ) . . )
Lemma 2. Let the derivative -@i be constant; then f is a linear function of x,
X

i.e. for certain constants ¢ and b we have f(x) = a + bx for all x.

Proof: From Lagrange’s theorem, on the average it follows that for any quantities
x, y there exists a 6 € (0,1) such that

— x ;
TS _ prfe 4 0y - 1
y—x
if the function fis differentiable in the interval {x, y). Let us assume an interval
{X,, X; for a certain 6 we have:

SO =S U e~ x).
X — X4 Ox

, ) .
Since —a—i— = b, where & is a const., then

o) =S _

.X'*XO

The mode of reasoning will not change on changing x,. In such a case we have
J(x) = flxy) + b(x — xp); let a = f{(x,) — b * x,, and hence f{x) = a + bx, which
was to be proved. It has appeared that Theorem 1 may be reversed.

Theorem 2. If In 4 is a linear function of E, then the straight lines described by
Eq. (11) form a pencil.

Proof: Let us have E,, E,, E3, Ay, Ay, A3 such that for certain constants ¢ and »
we can write:

Ind,=a+b"E
Ind, =a+b"E,
lnA3=a+b.E3.

For given values of E and 4 we obtain the following linear equations:

E, :

y+?x—lnA1=() (18)
E,

Yt px-Indy=0 (19)
E;

y+fx—lnA3=0. (20)

3 J. Thermal Anal. 17, 1979



294 PYSIAK, SABALSKI: COMPENSATION EFFECT

If the straight lines represented by Eqs (18 —20) are to form a pencil, a neces-
sary and sufficient condition is [7] that the matrix of the system of equations be
equal to 0. It should therefore be proved that:

- E -1
1, 71, —In 4,
E
1, -Rﬁ, —Ind, | =0.
E;
I, =, —Ind
. R ?
It should be noted that:
— ~ - E
1, —Rl, In A, 1, 7{1, —a—bEl_1
E E
1, ?2, —In4, |=|1, %, —a—bEy | =0
E; E;
I, —, —Ind 1, =, —a-—bE
L R 3__ \ R 3__I

since it is a necessary and sufficient condition that a linear relationship exists
between the lines or the columns of that matrix. In our case we have:

- 1 [~ !—E—l
—a — bE, 1 =1
R
E
—a — bE, | = —a| 1 |-bR 'Ez
E
—a — bE, 1 =2
| i  _ | R

which means that the third column is a linear combination of the first and second
columns with coefficients —g, —bR. Since the columns of the obtained matrix
are linearly correlated, the matrix is equal to 0, which was to be proved.

Theorems 1 and 2 may be formulated jointly in the following way:

Theorem 3. If the quantities k, E, T, A are intercorrelated by Eq. (10), then:
The quantities In 4 and E are linearly correlated if and only if there is a pencil

1. . .
relationship between In &k and T (i.e. the lines (11) form a pencil).

This interesting fact leads to the conclusion that a dual relationship holds here,
that is:
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Theorem 4. If the quantities k, E, T, and A are intercorrelated by Eq. (10) then:
A pencil relationship between In 4 and E exists if and only if there is a linear

. 1
relationship between In k& and T
Proof: The proof, intuitively obvious, is analogous to the proofs for Theorems 1

and 2 and requires only some changes in the substitution in Eq. (10). By substi-
tution of E = x and In 4 = y in Eq. (10) we obtain:

1
Ink — — p=0. 2
nk+x =7~ 21
In order to prove Theorem 4 we can follow the procedure applied in the proof

of Theorem 1. Let us assume that the straight lines (21) form a pencil; then for
certain xg, Yy, ky, ko, ks, T3, Ta, T3 the following relationships will hold:

Ink; + x, RlTl —¥% =0 (22)

lnkz—i-xoi—y():O (23)
RT,

In ks + o — 3 = 0. 4
RT,

By following the procedure applied above for Eqs (12— 14), we get:

Xy Inks—Ink, Inky, — Ink;
_ 20 - 25
R 1 1 1 1 @)

T, T T, T,

which means that the quotient of differences is always constant, as

A
T
the values ky, k,, ks, Ty, Ty, T5 were selected completely arbitrarily. Upon making
1
use of Lemmas 1 and 2, we may conclude that In k& and o are linearly correlated.
On following a procedure analogous to that applied in the proof of Theorem 2,

1
we assume that In & and T are linearly correlated. Let us take k;, ko, kg, Ty, T,

1 1 1
T; such that nky=a+b—, nky=a+b— and Inky=a+b—,
T, T, T,
where a and b are constants.
For k and T thus selected we have the following linear equations:
Ink, +x —y=0 (26)

RT,
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Ink, + x —y=0 27

RT,

1
In k. —_— —y=0. 2
n3+xRT3 y=20 (28)

Similarly as in Theorem 2, straight lines represented by Eqs (26—28) form a
pencil if and only if :

_ 1 _
nk, ——, —1
5 RT
1
Inky, ——, —1|=o0.
RT,
1
nky, ——, —1
% R

Making use of the fact that the first column is a linear combination of the second
and the third columns, we have:

Ik, ——, 1| |a4b-n) -, —1]
’ s a Y T
" RT, T, RT,
1 1 1
1 k7 s = b_9 s -1|=0
MKy pr THISLATE T R
1 1 1
1 k’ s b-__: > -1
| MK e SHL L et b |
and:
- 1 ~ - 1
b— -1
“toTr RT,
a+b ! 1|+ Rb !
—_ = —q i
T, RT,
1 1
a+b— -1
L T3 L L RT;

hence the straight lines (26) —(28) form a pencil, which was to be proved.
Theorems 3 and 4 lead to the formulation of very interesting definitions.

Definition 1. A pair of quantities (or parameters) (x;, x,) is correlated with a pair
of quantities (y,, y,) if and only if there exist real functions f;, f5, g1, g such that:

(1) quantities f1(x,), fo(x,) are linearly correlated if and only if a pencil corre-
lation exists between g;(y,), 92(rs);
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(2) quantities g,(y,), g(y,) are linearly correlated if and only if a pencil cor-
relation exists between fi(x;), fo(Xa).

The functions f;, /5, g1, g» Will be referred to as measuring scales (or in short
scales) for the quantities x;, X, ¥y, Vs, Tespectively [5].

On the basis of Definition 1 and Theorems 1—4 we can present the above
proved relationship in the form of the following theorem.

Fundamental theorem 1. If the quantities &, E, T, 4 are intercorrelated by Eq. (10),
then the pair (4, E) is correlated with the pair (k, 7).

1
Proof: Let us have fi(x) =Inx, fo(x) = x, g,{(x) = Inx, gu(x) = R and

x,=A, x,=E, y, =k, y, = T. Interpretation of Definition 1 conforming to
the contents of Theorems 3 and 4 means that the conditions of Definition 1 are
fulfilled, which is to say, that condition 1 is equivalent to Theorem 3, and con-
dition 2 is equivalent to Theorem 4, which was to be proved.

One can also suppose that the derived correlation is related with the form of
Eq. (10), which means that in the given empirical situation many more similar
correlations can exist. The Arrhenius equation is very frequently applied, and not
only in the field of chemical reactions, so an answer to the above given question
would be of very general significance.

In searching for the answer to this question, our bases will be the dual relation-
ships [6] well known in the field of mathematics, as well as certain conceptions
of projection geometry [7]. With the Arrhenius equation regarded as a projection
correlation it will be shown that the proofs ot Theorems 1—4 become a simple
consequence of fundamental conceptions of projection geometry thus leading to
new and surprising conclusions.

The Arrhenius equation in projection coordinates.
New correlation relationship

In numerous considerations of analytical geometry problems, a much higher degree of
generalization and elegance may be achieved by replacing the Cartesian coordinates by uni-
form coordinates or by projection coordinates in general. Such coordinates make it possible
to represent points, lines, planes, and, more generally, hyperplanes.

There is no analytical difference between projection coordinates of points and correspond-
ing Plucker coordinates of lines. The treatment of these coordinates depends merely on the
method of interpretation.

The points of the n-order Cartesian space R" are ordered systems (series of # in length) of

numbers (yy, ¥y, . - ., Y-

Let us relate this system with a system of » + 1 numbers: 1, y, ¥y, . . ., ¥,, and with all
systems proportional to it of general form A, Ay,, 4y, . . ., Ay, where: 2 = any number differ-
ent from zero. The systems A, Ay;, Ay,, ..., Ay, will be referred to as uniform (common)
coordinates of point ¥ = (y1, ¥, . . ., ¥,) in the space R".

The coordinates defined in this manner are determined with a precision corresponding to
the coefficient A # 0, and this property is taken into account when they are called the uniform
coordinates.
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A point with uniform coordinates x,, xy, . . ., x, will be denoted as {xo, X1y v 0 xn}. In order
to represent in Cartesian coordinates a point with given uniform coordinates, it is sufficient

. X1 Xn . . .
to change the system x,, X, - - ., Xy into the system 1, —, ..., —, if x5 % 0, as in Cartesian
x X,
. - X X, ° 0
coordinates a point is represented as (—1, e —“) .
Xo Xo

It is also interesting to point out the geometrical sense of uniform coordinates xg, xy, . . ., Xq,
when x, = 0.

If L is a line in space R®, which is determined by a point a = (a,, .. ., a,) and a vector
g = (2, %, . . ., o), then the line in the space R" is identical with a set of points p(¢) = a+
1 a,
—, =+
t t

+rtra=(a+toop, ..ottt a)= {1, al—i—t'fxl,...,an—l—t'otn} = {—
a
4oy, ey — 7ri+ “n} , where: t # 0. If (#) — oo, the point p(¢) departs unlimitedly from

a, and its uniform coordinates tend to the values 0, «), x,, . .., oy It is therefore intuitively
conceivable that such a system may be regarded as a point in infinity, i.e. as a so-called
improper point of line L. Parallel lines have a common improper point, and non-parallel
lines have different improper points. A line supplemented by its improper point is referred to
as a projection line.

A projection line differs from a Cartesian line (Euclidean line) by a single additional point
which terminates it in a certain sense, thus making the line similar to a circle of “infinite”
radius.

A transition from a Cartesian to a uniform system may often be effected by adding unity at
the end of the series of numbers representing the Cartesian system. Thus, if the Cartesian
coordinates are represented by (¥, s, - - -, ¥y), the uniform coordinates become (yy, ¥z, - « ., 1)-
The use of another analytical representation of a point facilitates the analysis of a linear equa-
tion on a plane, and it makes it possible to derive conclusions essential for the considerations
presented on p. 3.

If in Cartesian coordinates an equation of a line in plane (R?) has the form Ax + By + C =
= (0 (where 4% + B?> 0), then the transformation to projection cocrdinates {(x, y)} —
- {x, ¥, 1} - {xl, X9, x3} changes the linear equation to the form Ax, + Bx, + Cx3 =0,
since the system {x, ¥, 1} is proportional to the system x;, x5, X3; hence x = % and y = % y

3 3
and inversely. Hence, in any system of uniform coordinates (projection coordinates) every
line in a plane may be represented by the equation (m) ayx; + ayx; + a;x3 = 0, in which not
all the values a,, a,, a, disappear, i.e. |a,| + la,| + [a;] = 0.

If in equation (m) we replace the coefficients a,, @,, a; by numbers propertional to these
coefficients the result is the same straight line, since by multiplying equation (m) by 4 % 0
(by= A ay; by= 1" ay; by= 4" a; we obtain the equation (mm)b, - x;+ by’ x; +
+ by x5 = 0, and if x;, x,, x, fulfil the conditions of equation (m m), then by dividing them
by « we can conclude that x,, x,, x; satisfy equation (m). And inversely, if x;, x,, x; satisfy
equation (m), they also satisfy equation (m m), which means that equations (m) and (m m)
represent one and the same line.

In an analogous way as for a point, it is possible to derive for lines coordinates {al, as, aa},
which are the Plucker coordinates of a line within the proportionality precision limit.

Tn this case an equation of the type ayu, + ayu, + agu, = 0 (where |a;] + |ay] + |ag] # 0)
may be given the following interpretation:

(1) the equation is a necessary and sufficient condition for a point of coordinates {xl, Xg, x3}
to belong to a line of coordioates {al, a,, a3}, and

(2) the equation represents a pencil of lines passing through a point {al, a,, a3} of coordi-
nates x;, X, x3}, and for this reason it may also be referred to as an equation of a point.

Thus, we can regard the equation a,u, + ayu; + asus = 0 either as the equation of a line
or as the equation of a pencil of lines in the same coordinates, depending on whether the
coordinates {al, ay, 33} are treated as coordinates of a line or of a point.
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The projection geometry approach may also be applied to the transformed
Arrhenius equation (10). Multiplication of Eq. (10) by R gives:

1
R'lnk-l—E'?—R‘lnA:O. (29)

Relation (29) is equivalent to a projection equation of a line. It enables the con-
struction of the following correlation table:

Table 1
Coordi- |
nates a; : a, as Uy u, Ug
No. |
i 1|
1 R E In 4 In k — | R
T
;!
2 Ink | E | n4| R - R
. |
3 R — Ind ' Ink E R
T
! 1
4 R E R Ink | — In 4
| T

The results of the correlation table are:

Theorem 5. The quantities (E, 4) are correlated with the quantities (k, T).

Proof: Equation (29) is simultancously an equation of a line and an equation of a
pencil of lines, depending on whether (a;, a,, as) or (u;, u,, u3) are cooordinates

of a point or of a line.

Let us assume, therefore, that for different a,, ay, a; the quantities u;, us, ug
are constants and satisfy the projection equation, which means that for certain

. 1 .
ko, T, the quantities In &, 7 are constant for different 4 and E. Let u,, u, u;

0

be coordinates of a line. In such a case the projection equation establishes a linear
relationship between 4 and E. If at the same time we settle 4 and E in this equation
and we regard a,, a,, a; as coordinates of a line, we can get a line from a pencil

1
that establishes a relationship between In & and T

In an analogous way it is possible to establish the other correlations too.

Theorem 6. The quantities (k, E, A) are correlated with (7).

Proof: Second line of Table 1.

Theorem 7. Quantities (4, T) are correlated with (k, E).

Proof: Third line of Table 1.
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Theorem 8. The quantity (F) is correlated with (k, T, A).
Proof: Fourth line of Table 1.

The method of constructing a table leading to the above theorems is as follows:
from each term in Eq. (29) we take one factor to obtain the values a;, a,, a3, and
the remaining quantities are treated as u;, u,, u5. In this way we obtain 8 relations,
among which 2 pairs are of dual type, so it is sufficient to take into consideration
only four of them.

The starting Eq. (10) may also be multiplied by 7 to give a projection equation

1
T Ink+ E -E — T +In A4 = 0, for which a new table of correlation relation-

ships may be constructed.

Examples of empirical relationship.
Deviation factor { physical sense) of correlation

Upon analyzing the Arrhenius equation as an equation of a projection cor-
relation, we have stated, among others that the pairs of quantities (4, E) and
(k, T) are intercorrelated in appropriate scales. This means that, for a certain
pair (ky, Tp), often referred to as the isokinetic pair, and for any values of (4, E)
the transformed Arrhenius equation (29) is fulfilled. According to the earlier

. .. 1
findings therefore we can treat the quantities [ln kg, U R} as the Plucker co-
[

ordinates of a line represented in Fig. 4.

An analogous line has been obtained by one of us [8, 9] after it had been
established that points on the line correspond to different values of the pressure
(p) of the gaseous reaction product under the experimental conditions.

In the previous sections we have established that, if there is a linear relationship
between (4, E), then (k, T) must remain in a pencil relationship (in appropriate

. . 1
scales). This is the result of a different look at the triplet {In ko, 7 R}, now re-
[}

garded as the projection coordinates of a point, which is equivalent to the treat-
ment of Eq. (29) as an equation of a pencil (Fig. 5) with a common point of co-
nk, 1

R ’ RT,

An identical pencil has also been found experimentally [8, 9]. In this case dif-
ferent lines correspond to different values of the pressure of the gaseous reaction
product under experimental conditions.

It is possible to state, therefore, that the pressure is the deviation factor (it
decides about the physical sense) of this correlation, as different points in the line
in Fig. 4 and different slopes of the lines in Fig. 5 correspond to different values
of pressure. This statement conforms fully with considerations presented above.

ordinates (
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It should further be mentioned that in the case under consideration the pressure
of the gaseous reaction product (as a deviation factor) is also decisive for the motive
modulus of the process 4p = p, — p, and it may be a measure of the remoteness
of the reaction system from the state of equilibrium.

If we assume that a pencil relationship exists for (4, E) (Fig. 6), then for certain
(4,, Ep) a linear relationship also exists for (k, T).
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This case, too,has been studied experimentally [8, 9]. It permitted us to formulate
a hypothesis that the theoretically postulated deviation factor of that correlation
is a very complex parameter. It seems very probable that it is connected with both
the crystalline structure of the reaction substrate and the degree of its defective-
ness.

The presented examples demonstrate that every correlation is accompanied
by two different deviation factors (that seem to be responsible for the existence
of that correlation) but in many cases their nature (physical sense) is not completely
clear. It seems to be advisable, however, to introduce such parameters, as they
are measurable quantities. Hence:

Definition 2. If in appropriate scales a pair of quantities (x;, x,) is correlated with
a pair (y;, y,), then the slope of lines in the pencil of one relation of this correlation
will be referred to as a measure of the deviation factor of that relation.

Conclusion

The representation of the Arrhenius equation and of known empirical relation-
ship in the form of projection correlations is a first attempt to simplify fundamental
problems of chemical kinetics with the aid of the less familiar and apparently
more complicated theory of projection geometry.

Such an approach not only makes it possible to prove that the Zawadzki—
Bretsznajder rule, compensation effect and isokinetic temperature are merely
simple consequences of interpretation of the Arrhenius equation as a projection
correlation, but it also indicates the existence of new and evidently not investigated
relations and their mutual correlations.

The theoretical considerations presented in this work have been illustrated
with experimental data on topochemical reactions of thermal dissociation of
solids of the type Aga = Biciic + Cgase It seems, however, that the character
of the Arrhenius equation and of relationships derived from this equation is
decisive for a high degree of generalization of the problems under consideration.

Transformation of the Arrhenius equation to the form (29) that enables its
presentation as a projection correlation leads to theoretical discrimination of eight
deviation factors which impart to the correlations a definite (although complicated
and not always recognized) physical sense. On the basis of earlier works [3, 8, 9]
we have indicated that three of these factors may be decisive for the course of
thermal dissociation. One may assume, therefore, that all the remaining factors
(amounting to 2° = 8) are combinations of the three fundamental ones. Thus, it
may be concluded that the Arrhenius equation is a good model of a process so far
as the kinetics of this process are controlled by the fundamental deviation factors.

The above hypothesis seems to be confirmed by application of the presented
procedure to a more precise (with respect to the Arrhenius equation) relation:

AE,
k=A'Tm'€ RT
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which after transformation to the form:

1
Rlnk —RlnA— RInT" + E-— =0 (30)

becomes a projection correlation in space R® between a linear relation and a pencil
relation of planes. There are eight such correlation and sixteen corresponding
deviation factors. It seems that in model (30) it is possible to discriminate four
fundamental deviation factors, and all the others (amounting to 2* = 16) would
be some combinations of them.

Such reasoning leads to the conclusion that the form of a mathematical model
depends on the intention of its author, such or another number of factors influenc-
ing the course of the process being taken into account during the construction
of the model.
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REsuME — On présente la justification mathématique de I’existence de la température iso-
cinétique et de I’effet de compensation, ainsi que de la relation de ces quantités avec la loi de
Zawadzki-Bretsznajder.

ZUSAMMENFASSUNG — Der mathematische Beweis fiir die Existenz der isokinetischen Tem-
peratur und des Kompensationseffekts sowie fiir den Zusammenhang dieser GroBen mit
der Zawadzki — Bretsznajder-schen GesetzmiBigkeit wird erbracht.

Pesrome —IToxasano, 9o npasmio 3aBafckorc-bpeTcHaiinepa, KOMIEHCAUHOHHBEIN 2(DHEKT U H30-
KHHETHICCKAst TeMIeparypa sBiBIOTCA NPOCTHIM CIIEACTBHEM YPaBHEHUS AppeHHyca, Kak OTpa-
JKAromaA KOPpesalrs. YCTaHOBIEHO, 4TO TakKas HWHTepIpeTanus ypaBHEHWs AppEeHHyca II03-
BOJIAET PA3JIAYUTD (GAKTOPEE OTKIOHEHHS, KOTOPBIC IPHIAIOT ONPENETIeHHbH] (XOTS U He BCeraa
UPOCTOH ¥ YCTAHABIMBACMBIN) (HM3MYECKHI CMBICII H3BECTHOH SMITMPHYECKOH KOPPETISIHH.
IlpencrapneHa BO3MOXHOCTB YCTAHOBIEHHS HOBBIX KOPPEIANHOHHBIX COOTHOINEHMI HA OC-
HOBE 3TOTO CHOcoba PacCyKICHHMS.
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